¼¼¹Ì³ª/Çà»ç

> Á¤º¸¼¾ÅÍ > ¼¼¹Ì³ª/Çà»ç

Á¦¸ñ 2016³â 12¿ù 07ÀÏ »ý¹°Á¤º¸Çм¼¹Ì³ª
ÀÛ¼ºÀÚ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2016-11-30

¼­¿ï´ëÇб³ »ý¹°Á¤º¸ÇÐ Çùµ¿°úÁ¤ ÁÖÃַΠƯº° ¼¼¹Ì³ª¸¦ ¾Æ·¡¿Í °°ÀÌ ¿­°íÀÚ ÇÏ¿À´Ï, ¸¹Àº Âü¿© ¹Ù¶ø´Ï´Ù.

¡¡

ÀϽÃ: 2016³â 12¿ù 07ÀÏ ¼ö¿äÀÏ ¿ÀÀü 11½Ã

¿¬»ç: ³²Áø¿ì(ÇѾç´ëÇб³ »ý¸í°úÇаú)

Àå¼Ò: ¼­¿ï´ëÇб³ 25µ¿ 411È£

¡¡

Title : High-confidence Coding and Noncoding Transcriptome Maps

¡¡

Abstract : The advent of high-throughput RNA-sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data, by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcription start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising ninety-nine billion RNAs-seq reads from the ENCODE, human BodyMap projects, The Cancer Genome Atlas, and GTEx, CAFE enabled us to predict the directions of about eighty-nine billion unstranded reads, which led to the construction of more accurate transcriptome maps, comparable to the manually curated map, and a comprehensive lncRNA catalogue that includes thousands of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex genomes but also to expand the universe of non-coding genomes.

¡¡

Education

Sep, 2004. ~ Aug, 2007. Ph. D. in Bioinformatics of Seoul National University.

Sep, 2002 ~ Aug, 2004. ME in Bioinformatics of Seoul National University.

Mar, 1994 ~ Feb, 2001. BS in Biology of Yonsei University.

¡¡

Professional Research Experiences

2016.9~ Associate Professor, Dept. of Life Science, Hanyang University.

2014.3~2016.8 Assistant Professor, Dept. of Life Science, Hanyang University.

2012.9~2014.2 Assistant Professor, Graduate School in Biomedical Science and Engineering,

Hanyang University.

2008~2012 Postdoctoral fellow, MIT, HHMI, Whitehead Institute for Biomedical Research

2007~2008 Postdoctoral fellow, Seoul National University, MicroRNA Research Center

2002~2008 Researcher, Center for Bioinformation Technology (CBIT), Seoul National University.

2003 Visiting Researcher, Shortterm Program (2 months), Sakakibara Laboratory, Keio

University, Japan. Research: SNP analysis using DNA computing.

2001~2002 Research Assistant, Genome Sequencing and SNP Analysis, Corporation Pangenomics.

¡¡

Selected Publications

[Peerreviewed Papers]

Hui Kwon Kim, Myungjae Song, Jinu Lee, Adrussery. Vipin Menon, Soobin Jung, YoungMook Kang, Euijeon Woo, JinWu Nam, and Hyongbum (Henry) Kim. In vivo highthroughput profiling of CRISPRCpf1 activity based on target sequence composition. Nature Methods. in press.

Youngjune Park, Sangsoo Lim, JinWu Nam, and Sun Kim. Measuring intratumor heterogeneity by network entropy using RNAseq data. Sci. Rep. 6, 37767; doi: 10.1038/srep37767 (2016).

Jangil Sohn and JinWu Nam, The Present and Future of De Novo Whole Genome Assembly, Briefings in Bioinformatics, doi: 10.1093/bib/bbw096. 2016

YongHee Rhee, TaeHo Kim, AYoung Jo, MiYoon Chang, ChangHwan Park, SnagMi Kim, JaeJin Song, SangMin Oh, SangHoon Yi, BoHyun You, HyoenHo Kim, JinWu Nam, and SangHun Lee, Lin28a enhances the therapeutical potential of cultured neural stem cells in a Parkinson¡¯s disease model. Brain, 139(Pt 10):27222739, 2016.

JinWu Nam, SeoWon Choi, and BoHyun You, Incredible RNA: Dual Functions of Coding and Noncoding. Mol. Cells. 39(5):367374. 2016.

Kyoungwoo Nam, Heesu Jeong, and JinWu Nam. PseudoReferenceBased Assembly of Vertebrate Transcriptomes. Genes, 7:10, 2016.

Jiwon Shim and JinWu Nam. The expression and functional roles of microRNAs in stem cell differentiation. BMB reports, 49(1): 310, 2016.

Hoin Kang, Chongtae Kim, Heejin Lee, Jun Gi Rho, JwaWon Seo, JinWu Nam, Woo Keun Song, Sukoo Nam, Wook Kim and Eun Kyung Lee, Downregulation of microRNA3623p and microRNA329 promotes tumor progression in human breast cancer. Cell Death & Diff., 23(3):48495. 2016.

Vikram Agarwal, George W. Bell, JinWu Nam, David P.Bartel, Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4:e05005. 2015. (Citation number: 118).

MinHyeok Kim, BoHyun You, and JinWu Nam. Global Estimation of the 3' Untranslated Region Landscape Using RNA Sequencing. Methods, 83:111117, 2015. (Citation number: 2).

J.W. Nam, O. Rissland, D. Kopstein, V. Agarwal, C. Jan, M. Yildrim and D. Bartel, Global analyses of the effect of different cellular contexts on microRNA targeting. , Mol Cell, 53(6), 10311043, 2014. (Citation number: 55).

June Hyun Park, Soungyub Ahn, Soyoung Kim, Junho Lee, JinWu Nam*, Chanseok Shin* Degradome sequencing reveals an endogenous microRNA target in C. elegans, FEBS Letters 587(2013) 964969, 2013. (Citation number: 6).

J.W. Nam and D. Bartel, Long noncoding RNAs in C.elegans. Genome Research. 22: 25292540, 2012. Media: Nature Method. (Citation number: 91).

C.Shin*, J.W. Nam*, K.Farh*, R.Chiang, A.Shkumatava, and D.Bartel. Expanding the MicroRNA Targeting Code: A Novel Type of Site with Centered Pairing., Mol Cell, 38(6):789802, 2010. Highlight paper (Citation number: 365).

S. Hyun*, J.H. Lee*, H. J*. J.W. Nam, B.J. Namkoong, G. Lee, J. Chung, V.N. Kim, Conserved MicroRNA miR8/miR200 and Its Target USH/FOG2 Control Growth by Regulating PI3K, Cell, 139(6):10961108, 2009. (Citation number: 92).

S. Y. Park*, J. H. Lee*, M. Ha, J.W. Nam and V. N. Kim. "miR29 miRNAs activate p53 by targeting p85a and CDC42" Nature Structural and Molecular Biology 16(1):239, 2009 (Citation number: 472). J.W. Nam, I.H. Lee, K.B. Hwang, S.B. Park, and B.T. Zhang, Dinucleotide step parameterization of remiRNAs using multiobjective evolutionary algorithms. EvoBio, 2007.

M. Oh, H. Lee, Y.K. Kim, J.W. Nam, J.K. Rhee, B.T. Zhang, V.N. Kim, I. Lee, Identification and characterization of small RNAs from vernalized Arabidopsis thaliana, Journal of Plant Biology, 50(5):562572, 2007 (Citation number: 4).

J.G. Joung, K.B.Hwang, J.W. Nam, S.J. Kim, B.T. Zhang. Discovery of microRNAmRNA modules via populationbased probabilistic learning. Bioinformatics 23:11411147, 2007. (Citation number: 116).

J. Han, Y.T. Kim, K.H Yeom, J.W. Nam, I.H. Hur, Jekeun Rhee, B.T. Zhang and V.N. Kim. Molecular basis for the recognition and processing of primary microRNA by Drosha. Cell, 125:887901, 2006. (Citation number: 1215).

J.W. Nam*, J.H.Kim*, S.K.Kim, B.T. Zhang. ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Research 34:W455W458, 2006 (Citation number: 75).

J.W. Nam*, S.K. Kim* JeKeun Rhee, W.J. Lee, B.T. Zhang. miTarget: microRNA targetgene prediction using a Support Vector Machine. BMC Bioinformatics 7(1):411, 2006. Highlight paper (Citation number:209).

V.N. Kim and J.W. Nam, Genomics of microRNA. Trends in Genetics, 22(3):165173, 2006. Most downloaded paper (Citation number: 819).

SA Lee, KM Lee, WY Park, B Kim, J.W. Nam, KY Yoo, DY Noh, SH Ahn, A Hironen, D Kang. Obesity and genetic polymorphism of ERCC2 and ERCC2 as modifiers of risk of breast cancer. Exp. Mol. Med. 37(2):8690, 2005. (Citation number: 39).

J.W. Nam,