¼¼¹Ì³ª/Çà»ç

> Á¤º¸¼¾ÅÍ > ¼¼¹Ì³ª/Çà»ç

Á¦¸ñ 2019³â 05¿ù 28ÀÏ »ý¹°Á¤º¸ÇÐ ¼¼¹Ì³ª
ÀÛ¼ºÀÚ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2019-05-21

¼­¿ï´ëÇб³ »ý¹°Á¤º¸ÇÐ Çùµ¿°úÁ¤ ÁÖÃÖ·Î ¼¼¹Ì³ª¸¦ ¾Æ·¡¿Í °°ÀÌ ¿­°íÀÚ ÇÏ¿À´Ï ¸¹Àº Âü¿© ¹Ù¶ø´Ï´Ù.


ÀϽÃ:¡¡2019³â 5¿ù 28ÀÏ È­¿äÀÏ ¿ÀÀü 11½Ã

¿¬»ç: ¹è»ó¼ö ±³¼ö´Ô¡¡(ÇѾç´ëÇб³ È­Çаú)

Àå¼Ò:¡¡¼­¿ï´ëÇб³¡¡221µ¿ 113È£


TITLE

Genome editing using CRISPR,¡¡´Ù°¡¿À´Â À¯ÀüÀÚ ±³Á¤ ½Ã´ë


ABSTRACT

¡¡¡¡Genome editing with programmable nucleases including CRISPR-Cas9/Cpf1 derived RNA-guided endonucleases is broadly used for biomedical research, biotechnology, and medicine. In addition, CRISPR base editors that enable the direct conversion of DNA bases without producing double-stranded breaks (DSBs) of DNA were developed. Unlike ZFNs and TALENs whose DNA specificities are determined by DNA-binding proteins, CRISPR nucleases use complementary base pairing to recognize target sites. Now, CRISPR nucleases are widely exploited due to the ease of use and inexpensive cost; researchers can induce gene editing at different sites by simply altering the guide RNAs. However, CRISPR nucleases cleave not only on-target sites but also off-target sites that differ by up to several nucleotides from the on-target sites, causing unwanted off-target mutations and chromosomal rearrangements. Here I present web-based programs, named CRISPR RGEN Tools (www.rgenome.net), including a novel CRISPR design tool and a genome editing assessment tool. These tools are indispensable for gene mutation in human cells, animals and plants. Furthermore, I would introduce versatile applications of CRISPR nucleases such as a one-step transformation of Chlamydomonas reinhardtii and petunia by the DNA-free CRISPR, a circulating tumor DNA detection and the detailed mechanism of Cas9/Cpf1 revealed by single-molecule fluorescence imaging. Ultimately, I would also introduce my on-going studies – endogenous gene engineering technologies in human cells.